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PREFACE 

The ever-increasing demands for greater measurement accuracy require the careful 
investigation of effects previously treated heuristically.  What would have been considered 
hairsplitting yesterday is expected today and may be taken for granted tomorrow.   An 
example is the delay calibration problem, which is the subject of this little monograph. 

For a full appreciation of the theory presented, the reader should be familiar with 
probability and statistics at least on the level of the book by Freund [1]. The practical 
application of the statistical methods described requires the extensive use of computer 
programs.  The book by Afifi and Azen (21 provides a valuable exposition on the selec- 
tion and interpretation of "packaged" statistical programs. 

I have attempted to describe the measurement methods in a general way so that 
many variations can be included in the same general framework.   The mathematical 
models are thought to be the simplest ones adequate to describe the physical reality. 
Despite this simplicity, the models yield a surprising richness of insight and mathematical 
content. 

The measurement methods, the statistical techniques, and the theoretical results have 
been thoroughly tested.   In this regard, I gratefully acknowledge the assistance of Hans 
Kuhr, Douglas Wahrenburger, and Dean Watkeys of Locus, Inc.   Their contributions 
include the assembling of instrumentation, taking of data, writing of programs, and the 
performance of Monte Carlo studies which helped verify the theory. 
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METHODS, STATISTICS, AND THEORY OF DELAY CALIBRATION 

DIRECT ESTIMATION OF MEAN DELAY 

Introduction 

In radar and communication systems, it is often desirable to know when a pulse was 
actually received at the antenna, not just when it emerged from the receiver.   Primarily 
because of temperature fluctuations in the receiving system, the delay through the system 
is constantly changing.   Thus, there is a need for occasional delay calibration measurements. 

Even at constant temperature, the delay is a random variable, due to the presence of 
random noise at the receiver input.   Consequently, the calibration procedure must estimate 
the mean delay.   Usually, the time available for calibration limits the number of measure- 
ments which can be made to estimate the mean delay.   To determine the accuracy possible 
with limited measurements of the delay is one of the major purposes of this report. 

A method of direct measurement of the delay is depicted in Fig. 1.   The technique 
is to measure the time interval between an input mark pulse and the resulting output mark 
pulse.  The input pulse is generated by the data simulator; the output pulse emerges from 
the receiver.  The timing generator generates a time of day represented by a group of bits. 

DATA MODULATOR RECEIVER SIMULATOR 

' ,OUTPUT MARK 

TIMING 
GENERATOR 

TIME Of DAY SYSTEM 
TIMING 

DISTRIBUTOR 

l TIME OF DAY 
1 

INPUT  MARK MEASUREMENT 
TIMING 

DISTRIBUTOR 

DELAY 
MEASUREMENT 

UNIT 

' 
MEASUR 

, DELAY 
EO 

COMPUTER 
OR 

TAPE STORAGE 

Fig. 1 —Direct measurement method for delay calibration 

In each timing distributor, a time of day is assigned to the received mark pulse.  The 
difference between the assigned times is computed digitally in the delay measurement unit, 
the output of which is the measured delay.  Computer software uses multiple measurements 
to estimate the mean delay. 

This method is conceptually simple and direct.   It can be highly automated, with 
most of the data recording, computation, and data-presentation functions handled by the 
computer.   However, the very presence of the measuring apparatus disturbs the receiving 

1 



DON J. TORRIERI 

system and introduces inaccuracies into the mean-delay estimation.   The primary dis- 
turbance is due to the quantizations introduced by the timing distributors.   The effect 
of the quantizations shall be thoroughly analyzed in the next section. 

Another source of error is the delay caused by the presence of the modulator in the 
calibracion system.   The modulator, which is only employed during calibration, generally 
can be temperature controlled sufficiently to insure that its time of passage is a constant. 
Thus, the modulator delay need only be measured accurately once.   Subsequently, this 
constant can be subtracted from the measured system delay, either by the computer 
software or in the delay measurement unit.  Thus, the modulator delay shall not be 
considered explicitly in the subsequent sections of this report. 

We shall assume that the timing distributors are not part of the receiving system but 
are inserted during calibration only.   In each distributor, there is an elapsed time between 
the arrival of the pulse at the input and the instant of time-of-day assignment.   If the 
elapsed times for the two distributors are not equal, a constant bias is introduced into 
the mean-delay estimation.   The preceding discussion concerning the modulator bias applies 
to this differential distributor bias.   Hence, the latter shall not be considered further. 

In most receiving systems, the mean delay is sensitive to variations in the signal-to- 
noise ratio.   Thus, this ratio should be held reasonably constant during calibration.   In a 
later section, a statistical test of the sensitivity shall be discussed. 

General Theorems for a Single Measurement 

We shall define the system delay d as the sum of the modulator and receiver delays, 
and the differential distributor delay.   Let dm indicate the measured delay, which is defined 
as the quantity actually measured and sent to the computer or tape storage.   As shown in 
Fig. 2, we can write 

CLOCK 

TIME 
INPUT  MARK OUTPUT MARK 

Pig. 2—Timing assignments in the direct measurement of delay 

dm   = *1   + *2 (1) 

where xl and ^2 are the quantization errors due to the time tagging of the input and 
output marks, respectively.   Immediately following the occurence of a mark, the time 
tagging involves assigning a time of day corresponding to the next leading edge of a clock 
in the timing generator.   It is assumed that %1 is a random variable with a uniform distribu- 
tion and is statistically independent of the random variable d.   However, examination of 
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Fig. 2 indicates that x^ is completely specified by the values of d and xx    Specifically, 
if T is the system clock period, 

Xo = T - Trem '—^l (2) 

where rem (z/T) is the remainder obtained when z is divided by T if z > 0.   For example, 
if z = 16.3T, then rem (z/T) = 0.3.  When z < 0, we define rem (z/T) = rem ((mT + z)/T], 
with m such that mT + z > 0. 

If we define 

it follows that 

y = d - xx, (3) 

dm     =   >    +    T Trem — (4) 

Since xx'\% uniformly distributed between 0 and T and is statistically independent of 
d, it can be shown with elementary probability theory that the density function of the 
random variable y is given by 

My) = - f fly + x) cte, 
1 Jo 

(5) 

where /"(z) is the density function of the random variable d.   We shall always assume that 
/"(e) is a well-behaved continuous function. 

Observe that because of the time-tagging mechanism, the probability is zero that 
dm is not equal to a positive integral multiple of the bit period T.   F-om Eq. (4) it is 
seen that dm is a function of the single random variable y.   It follows from elementary 
probability theory that 

P(d m nT) = P(nT - T < y < nT), (6) 

where n is a positive integer and P(   ) denotes the probability of the event in parentheses. 
Using Eq. (5) in Eq. (6), we conclude that the probability of the measured delay is given 
by 

P(dm  = r) = 0 T # nT 

**(<*, 
nT)- ridy i dy dx -f(y + x), 

"(n-UT J0 i 
n = 1, 2, 3, . . (7) 

If we regard dm as an estimate of the expected value of d, the "true" delay, it is 
important to establish whether the estimate is biased.   Let £(   ) denote the expected value 
of the quantity in parentheses.   From the definition of expected value and Eq. (7), we 
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can write 

^dm) = I] n   J dy  f   dxf(y + x). 
•nT rT 

n=l       -(n-l)T "0 
(8) 

A direct summation of this series for arbitrary f{z) is clearly impossible. We shall instead 
use an indirect approach based on the expected-value theorem. The following theorem is 
fundamental in assessing the value of our measurement procedures. 

Theorem 1:   The expected value of the measured delay, given by equation (1), is 
equal to the expected value of the system delay; that is, 

Eidm) = Eid). (9) 

Thus, the measured delay is an unbiased estimate of the mean system delay. 

Proof.   From the expected-value theorem of probability, we can write 

Eidm) m' = £ Hy) y + T - Trem 
$ 

dy. (10) 

Substituting Eq. (5) into Eq. (10), interchanging the order of integration, and performing 
a change of variable, we obtain 

E(d ^-'T  [dxf dy f{y) y - x + T - T rem (V)] • (11) 

Since f{y) is the density function of the random variable d, we have by definition 

| yf(y)dy = E{d). (12) 

Combining Eqs. (11) and (12) and interchanging the order of integration, we get 

E(dm) = E(d) + I   ^(^ T       r 
~  -   J   dyfiy) 

To evaluate the factor in brackets, we note that 

(?)"?' 0<x<Trem 

(13) 

rem 

rem 
^)- 

§• 
rem 

\Tj       T 
+ 1, Trem 

$ 
< JC < T. (14) 
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Using Eq. (14), it follows that the factor in brackets in Eq. (13) is equal to the constant 
T/2. From the normalization property of density functions, the remaining integration if 
trivial.   Collecting terms, we obtain Eq. (9), and the theorem is proved. 

From the definition. Theorem 1, and Eq. (7), we can express the variance of the 
measured delay in the form 

<4 = V n2r   f dy    f    d* f(y + x) - 
„=! -'(n-DT        ^0 

E2{d) (15) 

This equation is the moot convenient form for numerical computation once the density 
function is specified.   However, for analytical purposes and to determine approximate 
formulas, an integral expression is more useful.   Furthermore, it is desirable to obtain 
bounds on the variance for an arbitrary continue us density function.   The next theorem 
provif^^o the needed information.   We denote the variance of the system delay by o2. 

Theorem 2.   The variance of the measured delay can be expressed as 

fy\ a| = a2 + T2 J    f(y)   tern \~j - rem2 f-^j dy. 

For any continuous density function, the following inequality must be satisfied: 

T2 
o2 < a2   < a2 + —. 

(16) 

(17) 

Proof: From the expected-value theorem, we write 

2 * = *K) -I h(y) y + T - Trem(- 

Using Eq. (5) and performing a change of variable, we obtain 

dy. (18) 

£(<) =    f f{y)i{y)dy, (19) 

where 

i(y) I f y - x + T - T rem 
y - x 

dx. (20) 

Substituting Eq. (14) into Eq. (20) and rearranging yields 
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i(y) =ir y + T - Treti 
% 

Tulx - Trem ii dx. 

u(x) = 

where u(x) is the unit step function defined by 

fo,        * < 0; 

1,        * > 0. 

Squaring the term in brackets, simplifying, ai d noting that u2(x) = U(JC), we have 

2 
/(y) = y   ■ T - Trem ® 

-2y - T + 2Trem (Dir-f-H^)) dx. 

After performing the remaining integration and regrouping terms, we are left with 

/(y) = y2 + T2 rem [-] - T2 rem2 fö . 

Since f{y) is the density function for the system delay, we know that 

£ y2ay)dy = o2 +f;2(d). 

Combining Eq. (19), (24), and (25) yields 

E(d2) = a2 + £2(d) + T2   J  f(y)   remö - rem2 (|j dy. 

K2\) 

(22) 

(23) 

(24) 

(25) 

(26) 

From the definition of a|., Theorem 1, and Eq. (26), we obtain the final expression given 
by Eq. (16).   The double inequality of Eq. (17) follows from Eq. (16) by noting that 
from elementary calculus 

0 < rem ^\l]<- (27) 

and employing the normalization property of density functions. 

The variance o?, is a function of the mean system delay.   Since it can be changed by 
inserting a variable delay line into the receiving system, the mean delay may be regarded 
as an adjustable parameter.   We can increase the accuracy of any estimator of the mean 
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delay by setting the mean delay so that aj, is near its minimum.   To this effect, we develop 
two theorems which help us to locate the appropriate mean delay, which we shall frequently 
denote by y'= E(d) for simplicity.   Since we are concerned only with physically realistic 
stituations, we restrict consideration to density functions of the form 

A.v) = g(\y - y\), 

where g{\x\) is a continuously differentiable function of x. 

(28) 

Theorem 3.   The variance of the measured delay is a periodic function of the mean 
delay.   The period is equal to the clock period T. 

Proo^.   Substitution of Eq. (28) into Eq. (16) and a change of variables yields 

4 = a2 + T2 r> lyl) rem 
y + y 

rem' 2 y +y dy. (29) 

Clearly, only the factor in brackets is a function of y.   From the definition of the rem 
function. 

rem 
(y_+y + T\ (y + y\ 

(30) 

Thus, the factor in brackets in Eq. (29) is periodic in y.   It follows that a2 is periodic in 
y, and the theorem is proved. 

Theorem 4.   The extrema of the variance of the measured delay occur at the two sets 
of points 

y = kT,        fe = 1, 2, 3,... , 

and 

y = feT +   -. fe =  1, 2, 3,... . (31) 

The maxima occur at one of these sets; the minima occur at the other set. 

Proof.   Under the assumption thatg(bcl) is continuously differentiable, from Eqs. (16) 
and (28) we obtain 

dal 
97 

T_ =  y2 
/- 

dg(\y - y\) 

97 
y\     2 y rem I —   - rem    — 
T \T 

dy. (32) 

Since g{\y - yl) is a symmetric function of y - y, the partial derivative in Eq. (32) is an 
antisymmetric function of y - y.   At the sets of points indicated in Eq. (31), the function 
in brackets in Eq. (32) is a symmetric function of y - y.   Consequently, the integrand in 
Eq. (32) is antisymmetric, and 
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ay 
= 0 (33) 

at the points defined by Eq. (31).   Thus, these points ate the e^trema.   From Theorem 3 
and the continuity of o|, one set must be the maxima and the other, the minima. 

To determine which set of points in Eq. (31) represents the minima, we can examine 
the second derivative of the variance.   It is often easier to evaluate the variance explicitly 
at each set and determine the minimi, by direct comparison. 

A special case of great interest occurs when the quantization is gross compared to 
the system standard deviation or when the signal-to-noise ratio is high.  In this case, the 
integral expression of Theorem 2 can be simplified.   We assume 

E(d) - T < y < E(d) + T; 

otherwise. 

f(y) > o, 

fiy) * o. 

We write E{d) in the form 

E(d) = KQT + R 

where KQ is the integral part obtained when £(d) is divided by T, and R is defined by 

R  = Trem [T] 

(34) 

(35) 

(36) 

If we use Eqs. (34) and (35), Theorem 2 yields 

.KnT+R*T 
o2  = o2 + T2 

"KQT+R-T ©--(1) f{y) |rem (-1 - rem' dy. (37) 

The integral can be divided into three regions.   In these regions we have 

f y       ^-   + 1,        K0T-T + R<y<K0T; 

K0T^y<K0T + T; 

1, K0T + T<y<K0T+T + R. 

Tern (—I =-s 
y - K0T 

K0T 
(38) 

On substitution of Eq. (38) into Eq. (37) and some manipulation, there results 

8 
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y - K 

+ Tz 

rno'T' «I.(-vy dy 

JK0T*R-T 
dy 

rK T*R*T        I 
T2 Ay) (-2 

+   2y - 2JC0r 
dy- (39) 

In view of Eq. (34), we can extend the limits of the first integral in Eq. (39) to 
infinity.   Making use of Eqs. (12) and (25) and the normalization condition, the first 
two terms in Eq. (39) can be simplified.   From Eq. (28) and a change of variables, the 
last two integrals in Eq. (39) can also be simplified.   OUT final result is 

a2  = R{T - R) + 2T   f (y - R)g{\y\)dy + 2T   f    (y - T + R)g(\y\)dy. 
J

R JT-R (40) 

Note that o2. is symmetric about R = 772.   From the above, it is apparent that 

a2(Ä = 0) = 2T   f yg(\y\)dy. (41) 

According to Theorems 3 and 4, Eq. (41) gives the value of o2 at one set of extrema.   In 
view of Eqs. (28) and (34), we can write 

o2(fcT) * T E{\y - y|]. k = 1,2,3, ... (42) 

As we shall see in the next section, this expression usually gives the minimum variance. 
Evaluating Eq. (40) at Ä = 7/2 and using the inequality in Theorem 2, we obtain the 
bounds: 

T2        „ / r\     T2        „ 
  < a2

T\kT + —   <  + o2, 
4 T \ 2/4 

This variance is generally the maximum. 

k = 1,2,3, (43) 

Normally Distributed System Delay 

In this section, we obiain formulas for the probability distribution and the variance 
under the assumption that the system delay is approximately described by a normal 
density function.   Thus, we take 

Ay) 
V^o 

exp 
(y - y)' 

2o5 
(44) 
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where y" = E{d) and o2 is the variance of the system delay.  Since the system delay can 
never take a negative value, we must assume'? » o to use Eq. (44) for all y.   Substituting 
into Eq. (7), we have 

-"■-iCh^)-^1^1) dy. (45) 

where 

erfc (*) f   exp ] 
V2iF Jx \  2 / 

dx (46) 

is the complementary error function.  By a suitable change of variable in each term, Eq. 
(45) can be written in the form. 

o+T/o 

Pid 
of o    rUT1'" 

m = nT) = —   I        ertc y dy -   —   I erfc y dy, (47) 
•'a-T/o 

where for copveni^nce we have defined 

a = 
nT - y 

From tabulated integrals, it can be shown that 

/ erfc xdx - x erfc x - N{x), 

where for convenience we have defined the standard normal function, 

1             I *2\ N(x) =  exp  
v/Sr \   2; 

(48) 

(49) 

(50) 

Using Eq. (49) in Eq. (47), we obtain a closed-form expression for the probability distribu- 
tion of the measured delay when the system delay has a normal density function: 

Pid, 

Pidm  = T) = 0,        T * nT; 

= nT) = — \2a erfc a - 2N(a) + AM a + — j 

a + —   lerfc (a + 
-:)!• 

n = 1,2,3, (51) 

10 
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In two special cases, approximate closed-form expressions can be obtained for the 
variance of the measured delay.   First consider the case where the quantization is fine. 
Thus, the system standard deviation is much greater than the clock period, that is, a » T. 
We employ the Taylor series expansions valid for small values of b: 

N(i + b) * N(a)[l - ab]; 

erfc (a + ft) * erfca - bN(a). 

Substituting Eq. (52) into Eq. (51) yields the approximate relation 

(52) 

P(dm  = nT) = - N(a),      o » T. n = 1, 2, 3  (53) 

Thus, in this case the limiting form of the envelope of the probability distribution is 
normal.   It follows that 

o| -*■ o2. a » T, (54) 

which is intuitively satisfying. 

The second special case to be considered occurs when Eq. (34) is applicable.   For a 
normal distribution, the condition T > 4o will be accepted as sufficient for Eq. (34).   We 
can then employ Eq. (40), with g{y) - N(y).   From a tabulated integral, it can be shown 
that 

{xN(x)dx = -N(x) (55) 

Using this equation and omitting terms which are negligible for all values of R, we obtain 

o% * R(T - R) - 2T{T - R) erfc [—^—J  - 2TR erfcf—J 

+ 2Ta T>4o. (56) 

Taking the second derivative of this expression with respect to Ä, we get 

2. 
a2o|        2T 

bR' «(^-(T) (57) 

By direct substitution, it follows that Oj, is a minimum when R = 0 and a maximum 
when R = 772.   Omitting negligible terms, Eq. (56) and Theorem 4 imply 

Minima: alfiT) 
* ■/!T°' 

k = 1, 2, 3, . (58) 

11 
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Maxima: o| Uj + - j * — + 4roN f-j - 2T2 erfc (—j, T 

k = 1,2,3  

Of course, Eq. (58) could have been derived directly from Eq. (42). 

> 4a, 

(59) 

^ 

Multiple Measurements 

During the period of calibration, many delay measurements are made.   If the metn 
delay is regarded as an unknown but nonrandom parameter, one might wish to make a 
maximum-likelihood estimate based on the sa.nple data.   However, even if the appropriate 
probability density function is known, the amount of computation required for the 
maximum-likelihood estimate is prohibitive.   For example, if the system delay is normally 
distributed, the measured delay has a single sample density function given by Eq. (51). 
Clearly, the differentiation of the corresponding multiple sample density function and the 
solution of the likelihood equation is a formidable task. 

Under the circumstances, a logical and simple procedure is to use the sample mean 
to estimate the mean delay.  If we let the symbol dm denote the sample mean and dm| 

denote a sample value of the measured delay, we have 

1   N 

m       jy / .    mi (60) 

Looking at Fig. 2, it is seen that the samples can be assumed to be independent if the 
interval between input marks is much larger than the system clock period T and if the 
system clock is independent of the data simulator clock.   If the temperature and the signal- 
to-noise ratio are approximately constant during calibration, we can accurately assume that 
£(d    ) = E(d   ).  Under thes» conditions, it follows from Eq. (60) and Theorem 1 that 

£(0 = Eidm) = E(d). (61) 

Similarly, we can write the following expression for the variance of the sample mean: 

2        aT 
m N 

(62) 

If the number of sample data points N is large, we can invoke the central limit theorem 
and assert that the sample mean is normally distributed. 

Equation (62) indicates that we should make Oj as small as possible.   With a variable 
delay line, we can adjust the mean delay so that o| is a minimum.  If the system delay is 
normally distributed, it follows from Eqs. (58) and (62) that we can adjust the mean delay 
so that 

ol = 
To 
— ,       r > 4o (63) 

12 
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As an example, suppose T = 100 ns, a = 20 ns, N = 1000, and d    ^10.173 /is.  With 
the insertion of a delay of 27 ns into the receiving system, we obtain dm = 10.2 ßs, which 
is an integral multiple of T.  Our variance is now approximately a minimum, and from 
Eq. (63) we know that om =« 1.3 ns. 

If the probability distribution of the system delay is unknown or possesses unknown 
parameters, the variance of the measured delay cannot be calculated using Eq. (42). We shall 
discuss the empirical estimation of the probability distribution in the next section. Another 
approach to determining o|, is to use the estimate provided by the sample variance, which is 
defined by 

N 

i= 1 

m ' (64) 

Under the same assumptions leading to Eq. (61), we have 

£(S2) = a% . (65) 

Thus, the sample variance provides an unbiased estimate of o|,.   It follows from Eq. (62) 
that an unbiased estimate of the variance of the sample mean is given by 

£2 

N' 
(66) 

where the circumflex above the symbol on the left-hand side indicates an estimated 
quantity. 

To precisely determine the accuracy provided by the estimate of Eq. (66), we need to 
know the probability distribution of the measured delay. However, an approximate computa- 
tion of the variance of the estimate can be accomplished by assuming that dm is approximately 
normally distributed. It then follows that {N - l)S2/o|, has a chi-square distribution with 
N - 1 degrees of freedom.   From this fact and Eq. (66), we obtain the variance of the 
estimated variance: 

var(aM » 
2(4 

WiN 1) 
(67) 

Another use for the sample variance is in estimating the standard deviation of the 
system delay, which can often be related theoretically to the signal-to-noise ratio at the 
receiver input.   If the system delay has a normal distribution and the mean delay is 
appropriately adjusted, Eq. (58) is valid.   If the left-hand side of Eq. (58) is estimated by 
the sample variance, we obtain the following estimate of the standard deviation of the 
system delay: 

jW   S2 

(68) 

The same crude approximation used to obtain Eq. (67) now yields 
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var(o) «  -j 
JTOn 

T*{N - 1) 
(69) 

It was mentioned in the first section that the mean delay is sensitive to variations in 
the signal-to-noise ratio.   Thus, we would like to know over what range of signal-to-noise 
ratio the mean delay can be considered a constant.   Suppose that we measure the sample 
means at various fixed values of signal-to-noise ratio.   Let jCj and Xg be the sample means 
from two random samples of size rtj and n2 at two different signal-to-noise levels. 
Assuming that the two random samples are independent, we test the null hypothesis that 
the two population means are equal against the alternative that they are not.   If n, and 
n2 are large enough that we can invoke the central limit theorem, the test statistic 

Z = (70) 

has a standard normal distribution, where o| and Og are the population variances.  To 
test the null hypothesis at the confidence level a = 0.05, the critical region is Z > 1.96. 
When the variances are unknown, we substitute the sample variances S| and S| for o j 
and Og.   We then accept the null hypothesis, if 

IJEj - *2I < 1.96 (71) 

Repeating this test over all pairs in a range of signal-to-noise rutio, we can validate or 
reject the approximate constancy of the mean delay within the range. 

EMPIRICAL DISTRIBUTIONS 

Manual Distribution Method 

To make use of the formulas and theorems derived in the prior sections, we must have 
at least some knowledge of the density function of the system delay.   For example. 
Theorem 4 can be invoked only if it can be verified that f{y) is symmetric about the 
mean, that is, if Eq. (28) can be shown to hold.   We shall now examine the empirical 
estimation of the probability distribution function. 

The manual distribution method (MDM) is implemented as shown in Fig. 3.  It is 
assumed that the input marks constitute a stationary ergodic process during the time 
period of measurement.   The two counters are set to count for a fixed time interval. 
The gate pulse of the digital time delay unit is triggered by the occurrence of the input 
mark.   Throughout the duration of the gate pulse, the high-speed switch will not pass 
any output marks.   Any output marks received after the fall time of the gate pulse 
will pass through the high-sp ied switch.   Initially the duration of the gate pul. e, T, 
is set to the smallest value at which the number of events registered on the passed-pulse 
counter, N , is less then the total number of marks, N, registered on the mark 
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I DATA 
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INPUT MARK 

DIGITAL GATE 
TIME DELAY   — *• 

UNIT 

ADJUST T 

OUTPUT MARK 

Fig. 3—Instrumentation of the manual distribution method 
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counter.  The setting r is then stepped in short intervals for successive measurements of 
N .  Each measurement of N   determines a point of the empirical distribution function, 
given by 

F(T) = 1 £ . 1 N 
(72) 

In other words, F(r) is an estimate of the probability that the measured delay is less than 
T.  Linear extrapolation ordinarily is used to determine F(T) for values of r between settings. 

The MDM is a time-consuming procedure.  To insure ergodicity, temperature fluc- 
tuations and the signal-to-noise ratio at the receiving system input must be carefully con- 
trolled while the MDM is being employed.  Furthermore, the time available for calibration 
mi y be insufficient for application of the MDM to an operating system.   For these reasons, 
the technique is useful primarily during design, initial deployment, and malfunction 
correction. 

We shall define the system delay as the delay due to the modulator and receiver. 
The quantity which actually is compared to the setting T shall be called the measured delay. 
The MDM produces an empirical distribut on function for the measured delay. ,An estimate 
of the mean value of the measured delay is provided by the value T0 at which F{TQ) = 1/2. 
From the empirical distribution function, the corresponding density function can be 
calculated numerically.   A numerical integration can then be performed to derive various 
moments, such as, the variance, skewness, and kurtosis.   We shall examine next the 
accuracy of the MDM and establish a model for the relation of the measured delay to the 
system delay. 

Because the high-speed switch cannot respond instantaneously to the gate pulse, 
there is a time lag between the fall time of the gate pulse and the actual time at which 
the output mark pulses begin to pass through the switch.   Consequently, a constant bias 
is introduced into the measured delay.  The rise time of the gate pulse coincides with a 
clock pulse internal to the digital delay unit.  We shall denote this clock period by T. 
If the clock in the data simulator is nonsynchronous with the digital delay unit clock and 
if the marks are separated by many clock periods, the uncertainty in the start time of the 
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gate pulse can be considered a uniformly distributed quantization error, which ranges from 
0 to T seconds.   Thus, we have established the following model: 

d - c + x , (73) 

where dm is the measured delay, d is the system delay, c is the bias of the high-speed 
switch, and x is th'- quantization error. 

Mathematical and Experimental Analysis of the MDM 

Since the random variables d and x are independent and x is uniformly distributed, 
it follows from Eq. (73) that 

E(dm) E(d) c + (74) 

and 

a| = o2 + 
j2 

(75) 

where a2 is the variance of dm and o2 is the variance of d.   Equation (74) tells us how to 
compute the mean system delay, which is what we are really trying to estimate, from the 
mean measured delay, which is estimated from the empirical distribution function supplied 
by the MDM.   Equation (75) indicates that, generally speaking, the shape of F(r) will not 
be significantly affected by the quantization error if o is at least several times the value of 
T. 

A test of our model and an evaluation of the bias can be accomplished by the 
experimental procedure illustrated in Fig. 4.  The two pulse generators are activated by 
the same external clock.   Thus, the simulated input and simulated output pulses have a 
fixed difference in starting times, which we shall call the simulated delay.  Because of the 
common external clock, the simulated delay must be an integral multiple of the clock 
period.   If the estimated mean value of the delay is not an integral multiple of the clock 
period, the deviation provides a measure of the bias.   If the external clock is stable during 

FREQUENCY 
STANDARD 

EXTERNAL CLOCK 

' ' ' ' 
PULSE 

GENERATOR 
PULSE 

GENERATOR 

INPUT OUTPUT MARK 
COUNTER 

1 
1 _      __  .   ' _ _ _ _ 

DIGITAL 
HIGH-SPEED 

PASSED 
PULSE 

COUNTER UN T SWI TCH 

Fig. 4—Model test and bias measurement 

16 



r 
NRL REPORT 7812 

the test, the simulated delay will have negligible variance.   Thus, F(T) will show the 
distribution of the quantization error. 

As an example. Fig. 5 shows some actual data taken from a model test using a 
Tektronics 7D11 Digital Time Delay Unit.  This unit has an internal clock with a 2-ns 
period.  The simulated input pulses were separated by 200 /is, and we let N = 34,247. 
In Fig. 5 the straight line indicates a uniform distribution over a 2-ns interval.  The actual 
data is seen to be quite close to the ideal. 

The external clock feeding the pulse generators had a period of 1 /is, and the simulated 
delay was 45 /i».   As shown in the figure, the mean measured delay is estimated as 44.9343 
/is.   Using Eq. (74), we arrive at the estimated value of the bias as c = 66.7 ns. 

44932 44937 
TIME DELAY (microseconds) 

Fig. 5—Data for the MDM model test 

For any fixed value of T, F(T) is a random variable which can take only rational values. 
From Eq. (72), the probability of any particular rational number is 

F(T) 
N 

= P[Np = N k],       k = 0,1,2, N, (76) 

where P [ ] denotes the probability of the event enclosed in the brackets.   The number 
N   is determined by successive Bernoulli trials of the measured delay.   Hence, N   has a 
binominal distribution.   Letting 1'{T) denote the "true" distribution function of the measured 
delay, Eq. (76) then yields 
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F(T) = 

From this relation, we obtain 

k 
f J(F(r)]*tl - F(T)1N^ 

E[F{T)]  = F(T) 

(77) 

(78) 

and 

F    ' 

F(T)[1 - F(r)] 
(79) 

where the left-hand side of Eq. (79) is the variance of F(T) at a fixed value of T. 
Equation (78) states that the MDM provides an unbiased estimate of F(r) at each value 
T.   Equation (79) gives a measure of the deviation of F(T) with respect to F(T).   Since 
0 < F(T) < 1, we obtain the upper bound given by 

O2(T) < —, 
F 4N 

(80) 

where equality holds at the value Tj for which F(T1) = 1/2. 

We now examine the accuracy with which the mean measured delay can be estimated 
from the empirical distribution function.  A rigorous derivation involves the adaptation of 
arrival-time estimation theory [3].  The derivation is so complicated that it deserves a 
report by itself.   Hence, we shall content ourselves with an approximate calculation of the 
variance of the mean delay estimated from F(r). 

We assume that the resolution and the number of settings of T are such that, with negli- 
gible error, F(TO) = 1/2 for some setting T0 of the digital time delay unit.   In other words, 
we exclude the possibility that F(T0) = 1/2 for an extrapolated setting.   If the number of 
points N is large, then it follows that, for the setting TQ, we have essentially measured 
the median of the sample.   We can then apply the following theorem [1], which holds 
when the population density f{y) is continuous and nonzero at the population median /T: 
For large n, the sampling distribution of the median for random samples of size 2n + 1 
is approximately normal, with the mean p and the variance l/8n[f(/i)]2.   If Ay) is 
symmetric about the population mean p = E{dm), then p- p. Assuming that N is sufficiently 
large that N = 2n, we conclude that the estimated mean measured delay is approximately 
normal, with variance 

al s mnvv (81) 

If f(p) is unknown, we can estimate it by numerical differentiation of F{p).  We can test 
whether two estimated means are equal by using Eq. (71), with the estimated mean in 
place of JC and a?  in place of S2/n. 
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Nonlinear Regremion Analysis 

When the "true" distribution function of the measured delay is known, except 
for some parameters, these parameters can be estimated from the empirical distribution 
function.  If the parameters are expressed in terms of the moments of the density function, 
they can be estimated by the numerical procedure described in the MDM section.   Alterna- 
tively, the pa ameters can be estimated by the leastrsquares method of nonlinear regression 
analysis.  This method entails the estimation of the parameters by minimizing the sum of 
squares of deviations of FIT,) with respect to F(TI), where the T(- are the values of the 
discrete settings. 

A more common situation is when one wishes to test a proposed regression model. 
The parameters of the model can be determined by the numerical procedure or the least- 
squares method. Then, the fit of the model is tested by an appropriate "goodness of fit" 
statistic. 

The standard goodness of fit tests, such as the chi-square and the Kolmogorov- 
Smimov [2], require a data format not supplied by the MDM.  Thus special tests must be 
applied.  We shall investigate two different techniques, both of which use the statistics 

F(T.) - FXr,.) 
Zi = \f^ . ' i = 1, 2, . . . n, (82) 

VFCT.ni - FCT,)] 

where n is the number of discrete settings ri which are such that F(T|.) =£ 0, 1.  As defined 
previously, N is the number of samples per fixed setting.  It shall be assumed that ^(T,) is 
independent of F(T.) when ; =£ i.   Thus, the Z^ are independent of each other.   If N is 
sufficiently large, the binomial distribution of F(T.) can be approximated by a normal one. 
From Eqs. (78) and (79), it then follows that the Z,- have standard normal distributions. 
The first test of the null hypothesis that F(T) is the true distribution function is an im- 
mediate consequence of these considerations. 

Modified Chi-Square Test: 

Form the test statistic 

X2 = £ Z? (83) 
«»1 

Test this statistic as a chi-square distribution with n - qi degrees of freedom, where q is 
the number of parameters estimated from F(T). 

The second test is based on the simple fact that either all of the \Z^ are less than a 
fixed number D or at least one of the IZJ is greater than D.  Thus, we may wriie 

/»(some 12,1 > D) = 1 - P(all |Z.| < D) 

= 1 - [P(IZl<D)ln 

= 1 - (1 - 2erfcZ))^ (84) 
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where the second equality follows from the independence of the Zi and the last equality 
results from using Eqs. (44) and (46).   Equation (84) provides the justification for the 
following test. 

Modified Kolmogorov-Smimov Test: 

Determine the maximum absolute value of the Z,.; that is, determine the quantity 

D = max IZ,!. (85) 
i 

Compute the test value 

p = 1 - (1 - 2erfcD)n. (86) 

The null hypothesis is acceptable at the confidence level a if p > a.   Otherwise, the null 
hypothesis is rejected. 

As mentioned previously, we can usually assume that the measured delay is distributed 
the same as the system delay if o is at least several times the value of T.   If the latter is 
not the case, we must calculate the known or proposed distribution of the measured delay 
by means of Eq. (73).   If f{y) is the density function of d - c and x is uniformly distributed 
from 0 to T, it follows from elementary probability theory that 

F(T) = {     f(y)dy +   |    ny)(~Ady. (87) 

If the system delay is normally distributed, we can substitute Eq. (44) into Eq. (87) 
to obtain 

F(T) = 1 - ^-[aerfca - N{a) - (a - 6) erfc (a - b) + N(a - &)], (88) 

where we define 

T - E{d) + c 
a =    

a 

and 

T 
b = -. (89) 

a 

Since F(n) = 1/2 when /i = E{dm) = E(d) - c+ r/2, the median of the measured delay is equal 
to its mean.   Differentiating Eq. (88) with respect to T, we obtain the density function, 

1 f(T) =   -[erfc(o   ■ b) - erica]. (90) 
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From this relation and Eq. (81), we have 

fp2 
a2.   * 

m 
AN 1 - 2 erfc 

2o 

(91) 

• 

> 

for the variance of the numerically estimated mean measured delay. 

Recent Developments 

With the production of Hewlett Packard's HP 5345A reciprocal counter [4], highly 
precise delay calibration is possible with a single measuring instrument.   Whereas the 
conventional counter measures the number of input events during an interval, the reciprocal 
counter measures the time interval between events. 

The reciprocal counter has two basic modes of operation.   In the time-interval- 
averaging mode, it may be used in place of the timing distributors, the timing generaku, 
and the delay measurement unit of Fig. 1.   The sample mean and sample variance are 
determined according to Eqs. (60) and (64).   A single delay measurement can be modeled 
by Eq. (1).   However, band-limited noise is added to the counter's time base, causing x^ 
and x 2 to be independent and uniformly distributed over the counter's clock period, which 
is T = 2 ns.   The use of the noise-modulated clock removes any harmonic relationship 
between the counter's clock frequency and the repetition rate of the input pulses, helping 
to insure the independence of successive samples of the measured delay.   Noting that we 
now have 

a| = a2 + 
2^2 

T' (92) 

Eqs. (61), (62), (65), (66), and (67) are valid. 

In another mode of operation, depicted in Fig. 6, the counter is used in conjunction 
with a calculator and a plotter.  The sample mean and sample variance are determined 

DATA ,..-„    1 
SIMULATOR 

INPUT  MARK RECIPROCAL 
COUNTER 

OUTPUT MARK 

' r 

CALCULATOR 

f 

PLOTTER 

Fig. 6—Use of the reciprocal counter 
in delay measurement 
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according to Eqs. (60) and (64).   A single delay .neasurement can be modeled exactly as 
in the direct method of the first part of this report.   Hence, Theorem 2 gives bounds on 
the variance of the measured delay.   This mode is an alternative to the manual distribution 
method.   Each sample value of the measured delay is sent to the calculator, where it is 
assigned to one of a set of disjoint class intervals.   In view of Eq. (7), the partition 
bet veen adjacent intervals should be located halfway between the possible values of the 
measured delay, which are integral multiples of T = 2 ns.   After all the sample values are 
assigned to intervals, the calculator and plotter assemble a histogram (empirical probability 
distribution).   The conventional chi-square or Kolmogorov-Smimov tests can be applied 
to this histogram to determine the goodness of fit of a proposed probability distribution. 

t - 
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